Regularization-free principal curve estimation
نویسندگان
چکیده
Principal curves and manifolds provide a framework to formulate manifold learning within a statistical context. Principal curves define the notion of a curve passing through the middle of a distribution. While the intuition is clear, the formal definition leads to some technical and practical difficulties. In particular, principal curves are saddle points of the mean-squared projection distance, which poses severe challenges for estimation and model selection. This paper demonstrates that the difficulties in model selection associated with the saddle point property of principal curves are intrinsically tied to the minimization of the mean-squared projection distance. We introduce a new objective function, facilitated through a modification of the principal curve estimation approach, for which all critical points are principal curves and minima. Thus, the new formulation removes the fundamental issue for model selection in principal curve estimation. A gradient-descent-based estimator demonstrates the effectiveness of the new formulation for controlling model complexity on numerical experiments with synthetic and real data.
منابع مشابه
A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملRegularization in Statistics
This paper is a selective review of the regularization methods scattered in statistics literature. We introduce a general conceptual approach to regularization and fit most existing methods into it. We have tried to focus on the importance of regularization when dealing with today’s high-dimensional objects: data and models. A wide range of examples are discussed, including nonparametric regres...
متن کاملGraph regularized seismic dictionary learning
A graph-based regularization for geophysical inversion is proposed that offers a more efficient way to solve inverse denoising problems by dictionary learning methods designed to find a sparse signal representation that adaptively captures prominent characteristics in a given data. Most traditional dictionary learning methods convert 2D seismic data patches or 3D data volumes into 1D vectors fo...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملA Newton Root-Finding Algorithm For Estimating the Regularization Parameter For Solving Ill-Conditioned Least Squares Problems
We discuss the solution of numerically ill-posed overdetermined systems of equations using Tikhonov a-priori-based regularization. When the noise distribution on the measured data is available to appropriately weight the fidelity term, and the regularization is assumed to be weighted by inverse covariance information on the model parameters, the underlying cost functional becomes a random varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013